Advertisements
Advertisements
प्रश्न
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
उत्तर
`= 1/2 [2 cos (7"A")/3 sin (5"A")/3]` ...[Multiply and divide by 2]
`= 1/2 [sin ((7"A")/3 + (5"A")/3) - sin ((7"A")/3 - (5"A")/3)]`
`= 1/2 [sin (12"A")/3 - sin (7"A" - 5"A")/3]`
`= 1/2 [sin 4"A" - sin (2"A")/3]`
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
sin 163° cos 347° + sin 73° sin 167° =
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the product of sine and cosine.
sin A + sin 2A