हिंदी

Prove That:Cos 40° Cos 80° Cos 160° = \[- \Frac{1}{8}\] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 

योग

उत्तर

\[LHS = \cos 40^\circ \cos 80^\circ \cos 160^\circ\]
\[ = \frac{1}{2}\left[ 2\cos 40^\circ \cos 80^\circ \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 40^\circ + 80^\circ \right) + \cos \left( 40^\circ - 80^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos 120^\circ + \cos \left( - 40^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\cos \left( 160^\circ \right)\left[ - \frac{1}{2} + \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{2}\cos 160^\circ \cos 40^\circ\]
\[= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ 2\cos 160^\circ \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 160^\circ + 40^\circ \right) + \cos \left( 160^\circ - 40^\circ \right) \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos 200^\circ + \cos 120^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 360^\circ - 160^\circ \right) - \frac{1}{2} \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\cos 160^\circ - \frac{1}{8} \left[ \because \cos \left( 360^\circ - 160^\circ \right) = \cos 160^\circ \right]\]
\[ = - \frac{1}{8} = RHS\]

 

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 5.2 | पृष्ठ ७

संबंधित प्रश्न

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×