Advertisements
Advertisements
प्रश्न
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
उत्तर
\[ = \frac{1}{2}\left[ 2\cos 40^\circ \cos 80^\circ \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 40^\circ + 80^\circ \right) + \cos \left( 40^\circ - 80^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos 120^\circ + \cos \left( - 40^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\cos \left( 160^\circ \right)\left[ - \frac{1}{2} + \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{2}\cos 160^\circ \cos 40^\circ\]
\[= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ 2\cos 160^\circ \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 160^\circ + 40^\circ \right) + \cos \left( 160^\circ - 40^\circ \right) \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos 200^\circ + \cos 120^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 360^\circ - 160^\circ \right) - \frac{1}{2} \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\cos 160^\circ - \frac{1}{8} \left[ \because \cos \left( 360^\circ - 160^\circ \right) = \cos 160^\circ \right]\]
\[ = - \frac{1}{8} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`