Advertisements
Advertisements
प्रश्न
Express the following as the product of sine and cosine.
cos 2θ – cos θ
उत्तर
cos 2θ – cos θ
`= - 2 sin ((2theta + theta)/2) sin ((2theta - theta)/2)` ...`[∵ cos "C" - cos "D" = - 2 sin (("C + D")/2) cos (("C - D")/2)]`
= - 2 sin `((3theta)/2) sin ((theta)/2)`
APPEARS IN
संबंधित प्रश्न
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Evaluate-
cos 20° + cos 100° + cos 140°