हिंदी

If Cos (α + β) Sin (γ + δ) = Cos (α − β) Sin (γ − δ), Prove that Cot α Cot β Cot γ = Cot δ - Mathematics

Advertisements
Advertisements

प्रश्न

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 
योग

उत्तर

\[\cos \left( \alpha + \beta \right) \sin \left( \gamma + \delta \right) = \cos \left( \alpha - \beta \right) \sin \left( \gamma - \delta \right)\]

\[ \Rightarrow \left[ \cos \alpha\cos \beta - \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta + \cos \gamma \sin \delta \right] = \left[ \cos \alpha \cos \beta + \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta - \cos \gamma \sin \delta \right]\]

\[\text{ Dividing both sides by }\sin \alpha \sin \beta \sin \gamma \sin \delta: \]
\[\frac{\left[ \cos\alpha \cos\beta - \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta}\]
\[ \Rightarrow \frac{\left[ \cos\alpha \cos\beta - \sin\alpha\sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta}\]
\[ \Rightarrow \left[ \cot\alpha \cot\beta - 1 \right]\left[ \cot\delta + \cot\gamma \right] = \left[ \cot\alpha \cot\beta + 1 \right]\left[ \cot\delta - \cot\gamma \right]\]
\[ \Rightarrow \cot\alpha \cot\beta cot\delta + \cot\alpha \cot\beta cot\gamma - cot\delta - cot\gamma = \cot\alpha \cot\beta cot\delta - \cot\alpha \cot\beta cot\gamma + cot\delta - cot\gamma \]
\[ \Rightarrow - \cot\delta - \cot\delta = - \cot\alpha \cot\beta \cot\gamma - \cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow - 2\cot\delta = - 2\cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow \cot\alpha \cot\beta \cot\gamma = \cot\delta\]
Hence proved.
shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 15 | पृष्ठ १९

संबंधित प्रश्न

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


sin 163° cos 347° + sin 73° sin 167° =


cos 35° + cos 85° + cos 155° =


The value of sin 50° − sin 70° + sin 10° is equal to


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the product of sine and cosine.

sin A + sin 2A


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×