Advertisements
Advertisements
प्रश्न
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
उत्तर
\[\cos \left( \alpha + \beta \right) \sin \left( \gamma + \delta \right) = \cos \left( \alpha - \beta \right) \sin \left( \gamma - \delta \right)\]
\[ \Rightarrow \left[ \cos \alpha\cos \beta - \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta + \cos \gamma \sin \delta \right] = \left[ \cos \alpha \cos \beta + \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta - \cos \gamma \sin \delta \right]\]
\[\frac{\left[ \cos\alpha \cos\beta - \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta}\]
\[ \Rightarrow \frac{\left[ \cos\alpha \cos\beta - \sin\alpha\sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta}\]
\[ \Rightarrow \left[ \cot\alpha \cot\beta - 1 \right]\left[ \cot\delta + \cot\gamma \right] = \left[ \cot\alpha \cot\beta + 1 \right]\left[ \cot\delta - \cot\gamma \right]\]
\[ \Rightarrow \cot\alpha \cot\beta cot\delta + \cot\alpha \cot\beta cot\gamma - cot\delta - cot\gamma = \cot\alpha \cot\beta cot\delta - \cot\alpha \cot\beta cot\gamma + cot\delta - cot\gamma \]
\[ \Rightarrow - \cot\delta - \cot\delta = - \cot\alpha \cot\beta \cot\gamma - \cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow - 2\cot\delta = - 2\cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow \cot\alpha \cot\beta \cot\gamma = \cot\delta\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`