Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{\cos \left( A - B \right)}{\cos \left( A + B \right)} + \frac{\cos \left( C + D \right)}{\cos \left( C - D \right)} = 0\]
\[ \Rightarrow \frac{\cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right)}{\cos \left( A + B \right) \cos \left( C - D \right)} = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right) = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) = - \cos \left( C + D \right) \cos \left( A + B \right)\]
\[ \Rightarrow \left[ \cos A \cos B + \sin A \sin B \right]\left[ \cos C \cos D + \sin C \sin D \right] = - \left[ \cos C \cos D - \sin C \sin D \right]\left[ \cos A \cos B - \sin A \sin B \right]\]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D \text{ we get, }\]
\[\frac{\left[ \cos A \cos B + \sin A\sin B \right]\left[ \cos C\cos D + \sin C\sin D \right]}{\cos A\cos B\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]\left[ \cos A\cos B - \sin A\sin B \right]}{\cos A\cos B\cos C\cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B + \sin A\sin B \right]}{\cos A\cos B} \times \frac{\left[ \cos C\cos D + \sin C\sin D \right]}{\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]}{\cos C\cos D} \times \frac{\left[ \sin C\cos A\cos B - \sin A\sin B \right]}{\cos A\cos B}\]
\[ \Rightarrow \left[ 1 + \tan A\tan B \right]\left[ 1 + \tan C\tan D \right] = \left[ \tan C\tan D - 1 \right]\left[ 1 - \tan A\tan B \right]\]
\[ \Rightarrow 1 + \tan C\tan D + \tan A\tan B + \tan A\tan B\tan C\tan D = \tan C\tan D - \tan A\tan B\tan C\tan D + \tan A\tan B\tan D - 1 + \tan A\tan B\]
\[ \Rightarrow 2\tan A\tan B\tan C\tan D = - 2\]
\[ \Rightarrow \tan A\tan B\tan C\tan D = - 1\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.