हिंदी

If Cos ( a − B ) Cos ( a + B ) + Cos ( C + D ) Cos ( C − D ) = 0 , Prove that Tan a Tan B Tan C Tan D = − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 

योग

उत्तर

We have, 
\[\frac{\cos \left( A - B \right)}{\cos \left( A + B \right)} + \frac{\cos \left( C + D \right)}{\cos \left( C - D \right)} = 0\]
\[ \Rightarrow \frac{\cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right)}{\cos \left( A + B \right) \cos \left( C - D \right)} = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right) = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) = - \cos \left( C + D \right) \cos \left( A + B \right)\]
\[ \Rightarrow \left[ \cos A \cos B + \sin A \sin B \right]\left[ \cos C \cos D + \sin C \sin D \right] = - \left[ \cos C \cos D - \sin C \sin D \right]\left[ \cos A \cos B - \sin A \sin B \right]\]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D \text{ we get, }\]
\[\frac{\left[ \cos A \cos B + \sin A\sin B \right]\left[ \cos C\cos D + \sin C\sin D \right]}{\cos A\cos B\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]\left[ \cos A\cos B - \sin A\sin B \right]}{\cos A\cos B\cos C\cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B + \sin A\sin B \right]}{\cos A\cos B} \times \frac{\left[ \cos C\cos D + \sin C\sin D \right]}{\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]}{\cos C\cos D} \times \frac{\left[ \sin C\cos A\cos B - \sin A\sin B \right]}{\cos A\cos B}\]
\[ \Rightarrow \left[ 1 + \tan A\tan B \right]\left[ 1 + \tan C\tan D \right] = \left[ \tan C\tan D - 1 \right]\left[ 1 - \tan A\tan B \right]\]
\[ \Rightarrow 1 + \tan C\tan D + \tan A\tan B + \tan A\tan B\tan C\tan D = \tan C\tan D - \tan A\tan B\tan C\tan D + \tan A\tan B\tan D - 1 + \tan A\tan B\]
\[ \Rightarrow 2\tan A\tan B\tan C\tan D = - 2\]
\[ \Rightarrow \tan A\tan B\tan C\tan D = - 1\]
Hence proved. 

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 14 | पृष्ठ १९

संबंधित प्रश्न

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


cos 40° + cos 80° + cos 160° + cos 240° =


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


The value of sin 50° − sin 70° + sin 10° is equal to


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate-

cos 20° + cos 100° + cos 140°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×