Advertisements
Advertisements
प्रश्न
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
उत्तर
LHS = sin A sin(60° + A) sin(60° – A)
= sin A [sin2 60° - sin2A]
[∵ sin (A + B) sin (A - B) = sin2A - sin2B]
= sin A `[(sqrt3/2)^2 - sin^2"A"]`
= sin A `[3/4 - sin^2"A"]`
= sin A `[(3 - 4 sin^2 "A")/4]`
`= 1/4` [3 sin A - 4 sin3A]
`= 1/4` sin 3A [∵ sin 3A = 3 sin A - 4 sin3A]
= RHS.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 40° + cos 80° + cos 160° + cos 240° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A