Advertisements
Advertisements
प्रश्न
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
बेरीज
उत्तर
LHS = sin A sin(60° + A) sin(60° – A)
= sin A [sin2 60° - sin2A]
[∵ sin (A + B) sin (A - B) = sin2A - sin2B]
= sin A `[(sqrt3/2)^2 - sin^2"A"]`
= sin A `[3/4 - sin^2"A"]`
= sin A `[(3 - 4 sin^2 "A")/4]`
`= 1/4` [3 sin A - 4 sin3A]
`= 1/4` sin 3A [∵ sin 3A = 3 sin A - 4 sin3A]
= RHS.
Hence proved.
shaalaa.com
Transformation Formulae
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]
Prove that:
\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]
Prove that:
\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]
Prove that:
\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]
Prove that:
\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]
If \[\tan\alpha = \frac{x}{x + 1}\] and
\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`