Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[\cos \left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right)\]
\[ = 2\cos \left\{ \frac{\left( \frac{\pi}{4} + x \right) + \left( \frac{\pi}{4} - x \right)}{2} \right\}\cos \left\{ \frac{\left( \frac{\pi}{4} + x \right) - \left( \frac{\pi}{4} + x \right)}{2} \right\} \left\{ \because \cos A + \cos B = 2\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[= 2\cos \left\{ \frac{\frac{\pi}{4} + x + \frac{\pi}{4} - x}{2} \right\}\cos \left\{ \frac{\frac{\pi}{4} + x - \frac{\pi}{4} + x}{2} \right\}\]
\[ = 2\cos$\left( \frac{\pi}{4} \right)$ \cos x\]
\[ = 2 \times \frac{1}{\sqrt{2}} \times \cos x\]
\[ = \sqrt{2}\cos x\]
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
The value of sin 50° − sin 70° + sin 10° is equal to
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.