मराठी

Prove That: Sin 5 a Cos 2 a − Sin 6 a Cos a Sin a Sin 2 a − Cos 2 a Cos 3 a = Tan a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]
बेरीज

उत्तर

Consider LHS: 
\[ \frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 5A \cos 2A - 2\sin 6A \cos A}{2\sin A \sin 2A - 2\cos 2A \cos 3A}\]
\[ = \frac{\sin \left( 5A + 2A \right) + \sin \left( 5A - 2A \right) - \sin \left( 6A + A \right) - \sin \left( 6A - A \right)}{\cos \left( A - 2A \right) + \cos \left( A + 2A \right) - \cos \left( 2A + 3A \right) - \cos \left( 2A - 3A \right)}\]
\[ = \frac{\sin 7A + \sin 3A - \sin 7A - \sin 5A}{\cos \left( - A \right) + \cos 3A - \cos 5A - \cos \left( - A \right)}\]
\[ = \frac{\sin 7A + \sin 3A - \sin 7A - \sin 5A}{\cos A + \cos 3A - \cos 5A - cos A}\]
\[ = \frac{\sin 3A - \sin 5A}{\cos 3A - \cos 5A}\]
\[ = \frac{2\sin \left( \frac{3A - 5A}{2} \right) \cos \left( \frac{3A + 5A}{2} \right)}{- 2\cos \left( \frac{3A + 5A}{2} \right) \cos\left( \frac{3A - 5A}{2} \right)}\]
\[ = \frac{\sin \left( - A \right) \cos 4A}{- \cos 4A \cos \left( - A \right)}\]
\[ = \frac{- \sin A \cos 4A}{- \cos 4A\cos A}\]
\[ = \frac{\sin A}{\cos A}\]
\[ = \tan A\]
 = RHS
Hence, LHS = RHS .

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 8.06 | पृष्ठ १८

संबंधित प्रश्‍न

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 50° − sin 70° + sin 10° is equal to


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×