Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 2A \sin A + \cos 6A \sin 3A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 11A \sin A + 2\sin 7A \sin 3A}{2\cos 11A sin A + 2\cos 7A \sin 3A}\]
\[ = \frac{\cos \left( 11A - A \right) - \cos \left( 11A + A \right) + \cos \left( 7A - 3A \right) - \cos \left( 7A + 3A \right)}{\sin \left( 11A + A \right) - \sin \left( 11A - A \right) + \sin \left( 7A + 3A \right) - \sin \left( 7A - 3A \right)}\]
\[ = \frac{\cos 10A - \cos 12A + \cos 4A - \cos 10A}{\sin 12A - \sin 10A + \sin 10A - \sin 4A}\]
\[ = \frac{\cos 4A - \cos 12A}{\sin 12A - \sin 4A}\]
\[ = \frac{- 2\sin \left( \frac{4A + 12A}{2} \right) \sin \left( \frac{4A - 12A}{2} \right)}{2\sin \left( \frac{12A - 4A}{2} \right) \cos \left( \frac{12A + 4A}{2} \right)}\]
\[ = \frac{- \sin 8A \sin \left( - 4A \right)}{\sin 4A \cos 8A}\]
\[ = \frac{\sin 8A \sin 4A}{\sin 4A \cos 8A}\]
\[ = \tan8A\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
sin 163° cos 347° + sin 73° sin 167° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Evaluate-
cos 20° + cos 100° + cos 140°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.