मराठी

If Sin α + Sin β = a and Cos α − Cos β = B, Then Tan\[\Frac{\Alpha - \Beta}{2}\] - Mathematics

Advertisements
Advertisements

प्रश्न

If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=

पर्याय

  • \[- \frac{a}{b}\]

     

  • \[- \frac{b}{a}\]

     

  • \[\sqrt{a^2 + b^2}\]

  •  None of these

MCQ
बेरीज

उत्तर

\[- \frac{b}{a}\]


Given:
sin α + sin β = a                  .....(i)
cos α − cos β = b                .....(ii)

Dividing (i) by (ii):

\[\Rightarrow \frac{\sin\alpha + \sin B}{\cos\alpha - \cos B} = \frac{a}{b}\]
\[ \Rightarrow \frac{2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right)}{- 2\sin\left( \frac{\alpha + \beta}{2} \right)\sin\left( \frac{\alpha - \beta}{2} \right)} = \frac{a}{b} \left[ \because \sin A + \sin B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \text{ and }\cos A + \cos B = - 2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \right]\]
\[ \Rightarrow \frac{\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right)}{- \sin\left( \frac{\alpha + \beta}{2} \right)\sin\left( \frac{\alpha - \beta}{2} \right)} = \frac{a}{b}\]
\[ \Rightarrow \cot\left( \frac{\alpha - \beta}{2} \right)=-\frac{a}{b}\]
\[ \Rightarrow \frac{1}{\cot\left( \frac{\alpha - \beta}{2} \right)}=\frac{1}{- \frac{a}{b}}\]
\[ \Rightarrow \tan\left( \frac{\alpha - \beta}{2} \right)=-\frac{b}{a}\]

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.4 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.4 | Q 6 | पृष्ठ २१

संबंधित प्रश्‍न

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


cos 35° + cos 85° + cos 155° =


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×