Advertisements
Advertisements
प्रश्न
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
उत्तर
\[\frac{1}{\sin A} + \frac{1}{\cos A} = \frac{1}{\sin B} + \frac{1}{\cos B}\]
\[ \Rightarrow \frac{1}{\sin A} - \frac{1}{\sin B} = \frac{1}{\cos B} - \frac{1}{\cos A}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\sin A\sin B} = \frac{\cos A - \cos B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\cos A - \cos B} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{2\sin\left( \frac{B - A}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- 2\sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{- \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- \sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\cos\left( \frac{A + B}{2} \right)}{\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \cot\left( \frac{A + B}{2} \right) = \tan A\tan B\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: