मराठी

If Cosec a + Sec a = Cosec B + Sec B, Prove that Tan a Tan B = Cot a + B 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].

बेरीज

उत्तर

\[\frac{1}{\sin A} + \frac{1}{\cos A} = \frac{1}{\sin B} + \frac{1}{\cos B}\]
\[ \Rightarrow \frac{1}{\sin A} - \frac{1}{\sin B} = \frac{1}{\cos B} - \frac{1}{\cos A}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\sin A\sin B} = \frac{\cos A - \cos B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\sin B - \sin A}{\cos A - \cos B} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{2\sin\left( \frac{B - A}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- 2\sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{- \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- \sin\left( \frac{A - B}{2} \right)\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \frac{\cos\left( \frac{A + B}{2} \right)}{\sin\left( \frac{A + B}{2} \right)} = \frac{\sin A\sin B}{\cos A\cos B}\]
\[ \Rightarrow \cot\left( \frac{A + B}{2} \right) = \tan A\tan B\]
Hence proved.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 11 | पृष्ठ १९

संबंधित प्रश्‍न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Evaluate-

cos 20° + cos 100° + cos 140°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×