Advertisements
Advertisements
प्रश्न
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
उत्तर
Consider LHS:
\[\cos (A + B + C) + \cos (A - B + C) + \cos (A + B - C) + \cos ( - A + B + C)\]
\[ = 2\cos \left( \frac{A + B + C + A - B + C}{2} \right) \cos \left( \frac{A + B + C - A + B - C}{2} \right) + 2\cos \left( \frac{A + B - C - A + B + C}{2} \right) \cos \left( \frac{A + B - C + A - B - C}{2} \right)\]
\[ = 2\cos\left( A + C \right) \cos B + 2\cos B \cos\left( A - C \right)\]
\[ = 2\cos B\left[ \cos \left( A + C \right) + \cos \left( A - C \right) \right]\]
\[ = 2\cos B\left[ 2\cos \left( \frac{A + C + A - C}{2} \right) \cos \left( \frac{A + C - A + C}{2} \right) \right]\]
\[ = 2\cos B\left[ 2\cos A \cos C \right]\]
\[ = 4\cos A \cos B \cos C\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: