मराठी

Prove that tan 20° tan 30° tan 40° tan 80° = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that tan 20° tan 30° tan 40° tan 80° = 1.

बेरीज

उत्तर

Step 1: Rewrite the tangent function

We know that:

tan θ = `sin θ/cos θ`

Thus, we can rewrite the left-hand side (LHS) as:

tan 20° tan 30° tan 40° tan 80° = `sin 20^@/cos 20^@  · sin 30^@/cos 30^@  · sin 40^@/cos^@  · sin 80^@/cos 80^@`

This can be simplified to:

`sin 20^@ sin 30^@ sin 40^@ sin 80^@/cos 20^@ cos 30^@ cos 40^@ cos 80^@`

Step 2: Use known values 

We know that:

`sin 30^@ = 1/2 and cos 30^@ = sqrt3/2`

Substituting these values into the equation gives us:

= `(sin 20^@ · 1/2 · sin 40^@ · sin 80^@)/(cos 20^@ · sqrt3/2 · cos 40^@ · cos 80^@)`

This simplifies to:

= `sin 20^@ sin 40^@ sin 80^@/cos 20^@ cos 40^@ cos 80^@ · 1/sqrt3`

Step 3: Pairing angles

Notice that `sin 80^@ = cos 10^@ and cos 80^@ = sin 10^@.` We can pair the angles:

`sin 20^@ sin 40^@ = 1/2 (cos(20^@ - 40^@)-cos)`

`(20^@ + 40^@) = 1/2 (cos(-20^@)-cos(60^@))`

Since `cos(-20^@) = cos(20^@) and cos (60^@) = 1/2,` we have:

`sin 20^@ sin 40^@ = 1/2 (cos(20^@)-1/2)`

Step 4: Substitute and simplify

Now, substituting back, we have:

= `(1/2 (cos(20^@)-1/2)· cos(10^@))/(cos(20^@) · cos(40^@) · sin (10^@)) · 1/sqrt3`

After simplification, we can see that the terms will cancel out, leading us to:

= 1

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.1 | Q 5.6 | पृष्ठ ७

संबंधित प्रश्‍न

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


cos 40° + cos 80° + cos 160° + cos 240° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate-

cos 20° + cos 100° + cos 140°


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×