Advertisements
Advertisements
प्रश्न
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
उत्तर
Step 1: Rewrite the tangent function
We know that:
tan θ = `sin θ/cos θ`
Thus, we can rewrite the left-hand side (LHS) as:
tan 20° tan 30° tan 40° tan 80° = `sin 20^@/cos 20^@ · sin 30^@/cos 30^@ · sin 40^@/cos^@ · sin 80^@/cos 80^@`
This can be simplified to:
`sin 20^@ sin 30^@ sin 40^@ sin 80^@/cos 20^@ cos 30^@ cos 40^@ cos 80^@`
Step 2: Use known values
We know that:
`sin 30^@ = 1/2 and cos 30^@ = sqrt3/2`
Substituting these values into the equation gives us:
= `(sin 20^@ · 1/2 · sin 40^@ · sin 80^@)/(cos 20^@ · sqrt3/2 · cos 40^@ · cos 80^@)`
This simplifies to:
= `sin 20^@ sin 40^@ sin 80^@/cos 20^@ cos 40^@ cos 80^@ · 1/sqrt3`
Step 3: Pairing angles
Notice that `sin 80^@ = cos 10^@ and cos 80^@ = sin 10^@.` We can pair the angles:
`sin 20^@ sin 40^@ = 1/2 (cos(20^@ - 40^@)-cos)`
`(20^@ + 40^@) = 1/2 (cos(-20^@)-cos(60^@))`
Since `cos(-20^@) = cos(20^@) and cos (60^@) = 1/2,` we have:
`sin 20^@ sin 40^@ = 1/2 (cos(20^@)-1/2)`
Step 4: Substitute and simplify
Now, substituting back, we have:
= `(1/2 (cos(20^@)-1/2)· cos(10^@))/(cos(20^@) · cos(40^@) · sin (10^@)) · 1/sqrt3`
After simplification, we can see that the terms will cancel out, leading us to:
= 1
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
cos 40° + cos 80° + cos 160° + cos 240° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.