Advertisements
Advertisements
प्रश्न
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
उत्तर
Given:
\[\cos A = m\cos B\]
\[ \Rightarrow \frac{\cos A}{\cos B} = \frac{m}{1}\]
\[ \Rightarrow \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{m + 1}{m - 1}\]
\[ \Rightarrow \frac{2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)}{- 2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)} = \frac{m + 1}{m - 1} \left[ \because \cos A + \cos B = 2\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)\text{ and }\cos A - \cos B = - 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ \Rightarrow \frac{\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- \sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)} = \frac{m + 1}{m - 1} \]
\[ \Rightarrow -\cot\left( \frac{A + B}{2} \right)\cot\left( \frac{A - B}{2} \right)=\frac{m + 1}{m - 1}\]
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
sin 163° cos 347° + sin 73° sin 167° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
The value of sin 50° − sin 70° + sin 10° is equal to
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`