मराठी

Prove That: Sin a + Sin 3 a + Sin 5 a Cos a + Cos 3 a + Cos 5 a = Tan 3 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 

बेरीज

उत्तर

Consider LHS: 
\[ \frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A}\]
\[ = \frac{\sin A + \sin 5A + \sin 3A}{\cos A + \cos 5A + \cos 3A}\]
\[ = \frac{2\sin \left( \frac{A + 5A}{2} \right) \cos \left( \frac{A - 5A}{2} \right) + \sin 3A}{2\cos \left( \frac{A + 5A}{2} \right) \cos \left( \frac{A - 5A}{2} \right) + \cos 3A}\]
\[ \]
\[ = \frac{2 \sin 3A \cos \left( - 2A \right) + \sin 3A}{2\cos 3A \cos \left( - 2A \right) + \cos 3A}\]
\[ = \frac{2\sin 3A \cos 2A + \sin 3A}{2\cos 3A \cos 2A + \cos 3A}\]
\[ = \frac{\sin 3A \left[ 2\cos 2A + 1 \right]}{\cos 3A \left[ 2\cos 2A + 1 \right]}\]
\[ = \tan 3A\]
= RHS
Hence, RHS = LHS .

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 8.01 | पृष्ठ १८

संबंधित प्रश्‍न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×