मराठी

If secx cos5x + 1 = 0, where 0 < x ≤ π2, then find the value of x. - Mathematics

Advertisements
Advertisements

प्रश्न

If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.

बेरीज

उत्तर

secx cos5x = –1

⇒ cos5x = `(-1)/secx`

We know that

secx = `1/cosx`

⇒ cos5x + cosx = 0

By transformation formula of T-ratios,

We know that

cosA + cosB = `2cos(("A" + "B")/2) cos(("A" - "B")/2)`

⇒ `2cos((5x + x)/2) cos((5x - x)/2)` = 0

⇒ 2cos3x cos2x = 0

⇒ cos3x = 0 or cos2x = 0

∵ 0 < x ≤ `pi/2`

Therefore, 0 < 2x ≤ π or 0 < 3x ≤ `(3pi)/2`

Therefore, 2x = `pi/2`

⇒ x = `pi/4`

3x = `pi/2`

⇒ x = `pi/6`

Or 3x = `(3pi)/2`

⇒ x = `pi/2`

Hence, x = `pi/6, pi/4, pi/2`.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 19 | पृष्ठ ५४

संबंधित प्रश्‍न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


cos 40° + cos 80° + cos 160° + cos 240° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


cos 35° + cos 85° + cos 155° =


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Evaluate-

cos 20° + cos 100° + cos 140°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×