Advertisements
Advertisements
प्रश्न
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.
उत्तर
secx cos5x = –1
⇒ cos5x = `(-1)/secx`
We know that
secx = `1/cosx`
⇒ cos5x + cosx = 0
By transformation formula of T-ratios,
We know that
cosA + cosB = `2cos(("A" + "B")/2) cos(("A" - "B")/2)`
⇒ `2cos((5x + x)/2) cos((5x - x)/2)` = 0
⇒ 2cos3x cos2x = 0
⇒ cos3x = 0 or cos2x = 0
∵ 0 < x ≤ `pi/2`
Therefore, 0 < 2x ≤ π or 0 < 3x ≤ `(3pi)/2`
Therefore, 2x = `pi/2`
⇒ x = `pi/4`
3x = `pi/2`
⇒ x = `pi/6`
Or 3x = `(3pi)/2`
⇒ x = `pi/2`
Hence, x = `pi/6, pi/4, pi/2`.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°