Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[LHS = 2\left( \cos \frac{5\pi}{12} \right) \left( \cos \frac{\pi}{12} \right)\]
\[ = \cos \left( \frac{5\pi}{12} + \frac{\pi}{12} \right) + \cos \left( \frac{5\pi}{12} - \frac{\pi}{12} \right) \left[ \because 2 \cos A \cos B = \cos (A + B) + \cos (A - B) \right]\]
\[ = \cos \frac{\pi}{2} + \cos \frac{\pi}{3}\]
\[ = 0 + \frac{1}{2}\]
\[ = \frac{1}{2}\]
\[RHS = \frac{1}{2}\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Evaluate:
sin 50° – sin 70° + sin 10°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`