Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \frac{\cos A + cos B}{\cos B - \cos A}\]
\[ = \frac{2\cos \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{2\sin \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right)} \left[ \because \cos A + \cos B = 2\cos \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) and \cos A - \cos B = 2\sin \left( \frac{A + B}{2} \right) cos \left( \frac{B - A}{2} \right) \right]\]
\[ = \frac{\cos \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{\sin \left( \frac{A + B}{2} \right) sin \left( \frac{A - B}{2} \right)}\]
\[ = \cot\left( \frac{A + B}{2} \right)\cot\left( \frac{A - B}{2} \right)\]
=RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 50° − sin 70° + sin 10° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.