Advertisements
Advertisements
प्रश्न
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
उत्तर
Consider LHS:
\[ \cos 3A + cos 5A + \cos 7A + \cos 15A\]
\[ = 2\cos \left( \frac{3A + 5A}{2} \right) \cos \left( \frac{3A - 5A}{2} \right) + 2\cos \left( \frac{7A + 15A}{2} \right) \cos \left( \frac{7A - 15A}{2} \right) \left\{ \because \cos A + \cos B = 2\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 4A \cos\left( - A \right) + 2\cos 11A \cos\left( - 4A \right)\]
\[= 2\cos 4A \cos A + 2\cos 11A \cos 4A\]
\[ = 2\cos 4A \left\{ \cos A + \cos 11A \right\}\]
\[ = 2\cos 4A \times \left\{ 2\cos \left( \frac{A + 11A}{2} \right) \cos \left( \frac{A - 11A}{2} \right) \right\}\]
\[ = 4\cos 4A \cos 6A \cos\left( - 5A \right)\]
\[ = 4\cos 4A \cos 5A \cos 6A\]
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`