Advertisements
Advertisements
Question
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Solution
Consider LHS:
\[ \cos 3A + cos 5A + \cos 7A + \cos 15A\]
\[ = 2\cos \left( \frac{3A + 5A}{2} \right) \cos \left( \frac{3A - 5A}{2} \right) + 2\cos \left( \frac{7A + 15A}{2} \right) \cos \left( \frac{7A - 15A}{2} \right) \left\{ \because \cos A + \cos B = 2\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 4A \cos\left( - A \right) + 2\cos 11A \cos\left( - 4A \right)\]
\[= 2\cos 4A \cos A + 2\cos 11A \cos 4A\]
\[ = 2\cos 4A \left\{ \cos A + \cos 11A \right\}\]
\[ = 2\cos 4A \times \left\{ 2\cos \left( \frac{A + 11A}{2} \right) \cos \left( \frac{A - 11A}{2} \right) \right\}\]
\[ = 4\cos 4A \cos 6A \cos\left( - 5A \right)\]
\[ = 4\cos 4A \cos 5A \cos 6A\]
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
cos 40° + cos 80° + cos 160° + cos 240° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`