Advertisements
Advertisements
Question
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Solution
LHS = 2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\]
`= 2 cos pi/13 cos (9pi)/13 + 2(cos ((3pi)/13 + (5pi)/13)/2) xx (cos ((3pi)/13 - (5pi)/13)/2)`
`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`
`= 2 cos pi/13 cos (9pi)/13 + 2(cos ((8pi)/13)/2) xx (cos (-(2pi)/13)/2)`
`= 2 cos pi/13 cos (9pi)/13 + 2cos (4pi)/13 cos ((-pi)/13)`
[∵ cos(-θ) = cos θ]
`= 2 cos pi/13 cos (9pi)/13 + 2cos (4pi)/13 cos pi/13`
`= 2 cos pi/13 (cos (9pi)/13 + cos (4pi)/13)`
[take 2 cos `pi/3` as common]
`= 2 cos pi/13 (2 cos (((9pi + 4pi)/13))/2 cos ((9pi - 4pi)/13)/2)`
`= 2 cos pi/13 (2 cos (13pi)/(13 xx 2) cos (5pi)/(13 xx 2))`
`= 2 cos pi/13 (2 cos pi/2 cos (5pi)/2)`
`= 2 cos pi/13 (0 xx cos (5pi)/(13 xx 2))`
= 0 = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Show that :
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.