English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

Prove that: 2 cos π13 cos coscos9π13+cos3π13+cos5π13 = 0 - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0

Sum

Solution

LHS = 2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\]

`= 2 cos  pi/13 cos  (9pi)/13 + 2(cos  ((3pi)/13 + (5pi)/13)/2) xx (cos  ((3pi)/13 - (5pi)/13)/2)`

`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`

`= 2 cos  pi/13 cos  (9pi)/13 + 2(cos  ((8pi)/13)/2) xx (cos  (-(2pi)/13)/2)`

`= 2 cos  pi/13 cos  (9pi)/13 + 2cos  (4pi)/13 cos ((-pi)/13)`

[∵ cos(-θ) = cos θ]

`= 2 cos  pi/13 cos  (9pi)/13 + 2cos  (4pi)/13 cos  pi/13`

`= 2 cos  pi/13 (cos  (9pi)/13 + cos  (4pi)/13)`

[take 2 cos `pi/3` as common]

`= 2 cos  pi/13 (2 cos  (((9pi + 4pi)/13))/2 cos  ((9pi - 4pi)/13)/2)`

`= 2 cos  pi/13 (2 cos  (13pi)/(13 xx 2) cos  (5pi)/(13 xx 2))`

`= 2 cos  pi/13 (2 cos  pi/2 cos  (5pi)/2)`

`= 2 cos  pi/13 (0 xx cos  (5pi)/(13 xx 2))`

= 0 = RHS

Hence proved.

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 4: Trigonometry - Exercise 4.3 [Page 88]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 4 Trigonometry
Exercise 4.3 | Q 5. (ii) | Page 88
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×