Advertisements
Advertisements
Question
cos 35° + cos 85° + cos 155° =
Options
0
- \[\frac{1}{\sqrt{3}}\]
- \[\frac{1}{\sqrt{2}}\]
cos 275°
Solution
0
\[ = 2\cos\left( \frac{35^\circ + 85^\circ}{2} \right) \cos\left( \frac{35^\circ - 85^\circ}{2} \right) + \cos155^\circ \left[ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ = 2\cos60^\circ \cos\left( - 25^\circ \right) + \cos155^\circ\]
\[ = 2 \times \frac{1}{2}\cos25^\circ + \cos155^\circ\]
\[ = \cos25^\circ + \cos155^\circ\]
\[ = 2\cos\left( \frac{25^\circ + 155^\circ}{2} \right) \cos\left( \frac{25^\circ - 155^\circ}{2} \right)\]
\[ = 2\cos90^\circ \cos65^\circ\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 50° − sin 70° + sin 10° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.