Advertisements
Advertisements
Question
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Solution
sin 6θ – sin 2θ
`= 2 cos ((6theta + 2theta)/2) cos ((6theta - 2theta)/2)` ...`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`
= 2 cos `((8theta)/2) sin ((4theta)/2)`
= 2 cos 4θ sin 2θ
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
cos 35° + cos 85° + cos 155° =
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.