English

Prove That: Cos 55° + Cos 65° + Cos 175° = 0 - Mathematics

Advertisements
Advertisements

Question

Prove that:
 cos 55° + cos 65° + cos 175° = 0

Sum

Solution

Consider LHS: 
\[\cos 55^\circ + \cos 65^\circ + \cos 175^\circ\]
\[ = 2\cos \left( \frac{55^\circ + 65^\circ}{2} \right) \cos \left( \frac{55^\circ - 65^\circ}{2} \right) + \cos 175^\circ \left\{ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 60^\circ \cos\left( - 5^\circ \right) + \cos 175^\circ\]
\[ = 2 \times \frac{1}{2}\cos 5^\circ + \cos 175^\circ\]
\[ = \cos 5^\circ + \cos 175^\circ\]
\[ = 2\cos \left( \frac{5^\circ + 175^\circ}{2} \right) \cos \left( \frac{5^\circ - 175^\circ}{2} \right)\]
\[ = 2\cos 90^\circ \cos 85^\circ\]
\[ = 0\]
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 3.1 | Page 17

RELATED QUESTIONS

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate:

sin 50° – sin 70° + sin 10°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×