Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin A \sin 2A + 2\sin 3A \sin 6A}{2\sin A \cos 2A + 2\sin 3A \cos 6A}\]
\[ = \frac{\cos \left( A - 2A \right) - \cos \left( A + 2A \right) + \cos \left( 3A - 6A \right) - \cos \left( 3A + 6A \right)}{\sin \left( A + 2A \right) + \sin \left( A - 2A \right) + \sin \left( 3A + 6A \right) + \sin \left( 3A - 6A \right)}\]
\[ = \frac{\cos\left( - A \right) - \cos 3A + \cos \left( - 3A \right) - \cos 9A}{\sin 3A \sin\left( - A \right) + \sin 9A + \sin \left( - 3A \right)}\]
\[ = \frac{\cos A - \cos 3A + \cos 3A - \cos 9A}{\sin 3A - \sin A + \sin 9A - \sin 3A}\]
\[ = \frac{\cos A - \cos 9A}{\sin 9A - \sin A}\]
\[ = \frac{- 2\sin \left( \frac{A + 9A}{2} \right) \sin \left( \frac{A - 9A}{2} \right)}{2\cos \left( \frac{A + 9A}{2} \right) \sin \left( \frac{9A - A}{2} \right)}\]
\[ = \frac{\sin5A\cos4A}{\sin 5A \cos \left( - 4A \right)}\]
\[ = \tan 5A\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.