Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\cos 3A + 2\cos 5A + \cos 7A}{\cos A + 2\cos 3A + \cos 5A}\]
\[ = \frac{\cos 3A + \cos 7A + 2\cos 5A}{\cos A + \cos 5A + 2\cos 3A}\]
\[ = \frac{2\cos \left( \frac{3A + 7A}{2} \right) \cos \left( \frac{3A - 7A}{2} \right) + 2\cos 5A}{2\cos \left( \frac{A + 5A}{2} \right) \cos \left( \frac{A - 5A}{2} \right) + 2\cos 3A}\]
\[ \]
\[ = \frac{2\cos 5A \cos \left( - 2A \right) + 2\cos 5A}{2\cos 3A \cos \left( - 2A \right) + 2\cos 3A}\]
\[ = \frac{2\cos 5A \cos 2A + 2\cos 5A}{2\cos 3A \cos 2A + 2\cos 3A}\]
\[ = \frac{2\cos 5A \left[ \cos 2A + 1 \right]}{2\cos 3A \left[ \cos 2A + 1 \right]}\]
\[ = \frac{\cos 5A}{\cos 3A}\]
= RHS
Hence, RHS = LHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
The value of sin 50° − sin 70° + sin 10° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.