English

Prove That:Cos 10° Cos 30° Cos 50° Cos 70° = \[\Frac{3}{16}\] - Mathematics

Advertisements
Advertisements

Question

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 

Sum

Solution

\[LHS = \cos 10^\circ \cos 30^\circ \cos 50^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ 2\cos 10^\circ \cos 50^\circ \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \cos \left( 10^\circ + 50^\circ\right) + \cos \left( 10^\circ - 50^\circ \right) \right] \cos 30^\circ \cos 70^\circ \left\{ \because 2\cos A \cos B = \cos\left( A + B \right) - \cos \left( A - B \right) \right\}\]
\[ = \frac{1}{2} \left[ \cos 60^\circ + \cos \left( - 40^\circ \right) \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \frac{1}{2} + \cos 40^\circ \right]\left( \frac{\sqrt{3}}{2} \right) \times \cos 70^\circ\]
\[= \frac{\sqrt{3}}{4}\cos 70^\circ\left[ \frac{1}{2} + \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{4}\left[ \cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ 2\cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 70^\circ + 40^\circ \right) + \cos \left( 70^\circ - 40^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos 110^\circ + \cos 30^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 180^\circ - 70^\circ \right) + \frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\sqrt{3}}{2}\cos 70^\circ - \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{3}{16} \left[ \because \cos \left( 180^\circ - 70^\circ \right) = - \cos 70^\circ \right]\]
\[ = \frac{3}{16} = RHS\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 5.1 | Page 7

RELATED QUESTIONS

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×