Advertisements
Advertisements
Question
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Solution
\[LHS = \cos 10^\circ \cos 30^\circ \cos 50^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ 2\cos 10^\circ \cos 50^\circ \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \cos \left( 10^\circ + 50^\circ\right) + \cos \left( 10^\circ - 50^\circ \right) \right] \cos 30^\circ \cos 70^\circ \left\{ \because 2\cos A \cos B = \cos\left( A + B \right) - \cos \left( A - B \right) \right\}\]
\[ = \frac{1}{2} \left[ \cos 60^\circ + \cos \left( - 40^\circ \right) \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \frac{1}{2} + \cos 40^\circ \right]\left( \frac{\sqrt{3}}{2} \right) \times \cos 70^\circ\]
\[= \frac{\sqrt{3}}{4}\cos 70^\circ\left[ \frac{1}{2} + \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{4}\left[ \cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ 2\cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 70^\circ + 40^\circ \right) + \cos \left( 70^\circ - 40^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos 110^\circ + \cos 30^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 180^\circ - 70^\circ \right) + \frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\sqrt{3}}{2}\cos 70^\circ - \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{3}{16} \left[ \because \cos \left( 180^\circ - 70^\circ \right) = - \cos 70^\circ \right]\]
\[ = \frac{3}{16} = RHS\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.