Advertisements
Advertisements
Question
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Solution
`sin "A"/8 sin (3"A")/8 = 1/2(2 sin "A"/8 sin (3"A")/8)`
[∵ 2 sin A sin B = cos(A – B) – cos(A + B)
`= 1/2[cos ("A"/8 - (3"A")/8) - cos("A"/8 + (3"A")/8)]`
`= 1/2 [cos (("A" - 3"A")/8) - cos (("A" + 3"A")/8)]`
`= 1/2 [cos ((- 2"A")/8) - cos ("4A"/8)]`
`= 1/2 [cos ((- "A")/4) - cos ("A"/2)]`
`= 1/2 [cos "A"/4 - cos "A"/2]` ...[∵ cos(-θ) = cos θ]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of sin 50° − sin 70° + sin 10° is equal to