Advertisements
Advertisements
Question
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Solution
\[\frac{1 - 4\sin10^\circ \sin70^\circ}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ 2\sin10^\circ \sin70^\circ \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \cos\left( 10^\circ - 70^\circ \right) - \cos\left( 10^\circ + 70^\circ \right) \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \cos\left( - 60^\circ \right) - \cos80^\circ \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \cos60^\circ - \cos80^\circ \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \frac{1}{2} - \cos\left( 90^\circ - 10^\circ \right) \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2 \times \frac{1}{2} + 2\cos\left( 90^\circ - 10^\circ \right)}{2\sin10^\circ}\]
\[ = \frac{2\sin10^\circ}{2\sin10^\circ}\]
\[ = 1\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`