English

Prove That: Sin 3 a Cos 4 a − Sin a Cos 2 a Sin 4 a Sin a + Cos 6 a Cos a = Tan 2 a - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]
Sum

Solution

Consider LHS: 
\[ \frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A sin A + \cos 6A \cos A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 3A \cos 4A - 2\sin A \cos 2A}{2\sin 4A \sin A + 2\cos 6A \cos A}\]
\[ = \frac{\sin \left( 3A + 4A \right) + \sin \left( 3A - 4A \right) - \sin \left( A + 2A \right) - \sin \left( A - 2A \right)}{\cos \left( 4A - A \right) - \cos \left( 4A + A \right) + \cos \left( 6A + A \right) + \cos \left( 6A - A \right)}\]
\[ = \frac{\sin 7A + \sin \left( - A \right) - \sin 3A - \sin \left( - A \right)}{\cos 3A - \cos 5A + \cos 7A + \cos 5A}\]
\[ = \frac{\sin 7A - \sin A - \sin 3A + \sin A}{\cos 3A - \cos 5A + \cos 7A + \cos 5A}\]
\[ = \frac{\sin 7A - \sin 3A}{\cos 3A + \cos 7A}\]
\[ = \frac{2\sin \left( \frac{7A - 3A}{2} \right) \cos \left( \frac{7A + 3A}{2} \right)}{2\cos \left( \frac{3A + 7A}{2} \right) \cos \left( \frac{3A - 7A}{2} \right)}\]
\[ = \frac{\sin 2A \cos 5A}{\cos 5A \cos \left( - 2A \right)}\]
\[ = \frac{\sin 2A \cos 5A}{\cos 5A \cos 2A}\]
\[ = \tan 2A\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 8.08 | Page 18

RELATED QUESTIONS

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


The value of cos 52° + cos 68° + cos 172° is


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


cos 35° + cos 85° + cos 155° =


The value of sin 50° − sin 70° + sin 10° is equal to


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×