Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A sin A + \cos 6A \cos A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 3A \cos 4A - 2\sin A \cos 2A}{2\sin 4A \sin A + 2\cos 6A \cos A}\]
\[ = \frac{\sin \left( 3A + 4A \right) + \sin \left( 3A - 4A \right) - \sin \left( A + 2A \right) - \sin \left( A - 2A \right)}{\cos \left( 4A - A \right) - \cos \left( 4A + A \right) + \cos \left( 6A + A \right) + \cos \left( 6A - A \right)}\]
\[ = \frac{\sin 7A + \sin \left( - A \right) - \sin 3A - \sin \left( - A \right)}{\cos 3A - \cos 5A + \cos 7A + \cos 5A}\]
\[ = \frac{\sin 7A - \sin A - \sin 3A + \sin A}{\cos 3A - \cos 5A + \cos 7A + \cos 5A}\]
\[ = \frac{\sin 7A - \sin 3A}{\cos 3A + \cos 7A}\]
\[ = \frac{2\sin \left( \frac{7A - 3A}{2} \right) \cos \left( \frac{7A + 3A}{2} \right)}{2\cos \left( \frac{3A + 7A}{2} \right) \cos \left( \frac{3A - 7A}{2} \right)}\]
\[ = \frac{\sin 2A \cos 5A}{\cos 5A \cos \left( - 2A \right)}\]
\[ = \frac{\sin 2A \cos 5A}{\cos 5A \cos 2A}\]
\[ = \tan 2A\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
The value of cos 52° + cos 68° + cos 172° is
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If \[\tan\alpha = \frac{x}{x + 1}\] and
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: