English

If X Cos θ = Y Cos ( θ + 2 π 3 ) = Z Cos ( θ + 4 π 3 ) , Prove that X Y + Y Z + Z X = 0 - Mathematics

Advertisements
Advertisements

Question

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 

Sum

Solution

\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[\Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{0}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}\]
\[ \Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0\]
\[ \Rightarrow \frac{yz + zx + xy}{xyz} = 0\]
\[ \Rightarrow xy + yz + zx = 0\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 18 | Page 19

RELATED QUESTIONS

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


cos 40° + cos 80° + cos 160° + cos 240° =


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


cos 35° + cos 85° + cos 155° =


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the product of sine and cosine.

sin A + sin 2A


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×