Advertisements
Advertisements
Question
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Solution
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[\Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{0}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}\]
\[ \Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0\]
\[ \Rightarrow \frac{yz + zx + xy}{xyz} = 0\]
\[ \Rightarrow xy + yz + zx = 0\]
APPEARS IN
RELATED QUESTIONS
Show that :
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.