Advertisements
Advertisements
Question
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Solution
Consider LHS:
\[ \cos 20^\circ \cos 100^\circ + \cos 100^\circ \cos 140^\circ - \cos 140^\circ \cos 200^\circ\]
\[ = \frac{1}{2}(2\cos 20^\circ \cos 100^\circ + 2\cos 100^\circ \cos 140^\circ - 2\cos 140^\circ \cos 200^\circ)\]
\[ = \frac{1}{2}\left[ \cos\left( 100^\circ + 20^\circ \right)\cos \left( 100^\circ - 20^\circ \right) + \cos \left( 140^\circ + 100^\circ \right)\cos \left( 140^\circ - 100^\circ \right) - \cos \left( 200^\circ + 140^\circ \right)\cos \left( 200^\circ - 140^\circ \right) \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos80^\circ + \cos240^\circ + \cos40^\circ - \cos340^\circ - \cos60^\circ \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos240^\circ - \cos60^\circ + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ \left( - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos\left( \frac{80^\circ + 40^\circ}{2} \right)\cos\left( \frac{80^\circ - 40^\circ}{2} \right) - \cos\left( 360^\circ - 20^\circ \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos60^\circ\cos20^\circ - \cos20^\circ \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \cos20^\circ - \cos20^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} \right]\]
\[ = - \frac{3}{4} = RHS\]
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`