English

Prove That: Cos 20° Cos 100° + Cos 100° Cos 140° − 140° Cos 200° = − 3 4 - Mathematics

Advertisements
Advertisements

Question

Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 

Sum

Solution

Consider LHS: 
\[ \cos 20^\circ \cos 100^\circ + \cos 100^\circ \cos 140^\circ - \cos 140^\circ \cos 200^\circ\]
\[ = \frac{1}{2}(2\cos 20^\circ \cos 100^\circ + 2\cos 100^\circ \cos 140^\circ - 2\cos 140^\circ \cos 200^\circ)\]
\[ = \frac{1}{2}\left[ \cos\left( 100^\circ + 20^\circ \right)\cos \left( 100^\circ - 20^\circ \right) + \cos \left( 140^\circ + 100^\circ \right)\cos \left( 140^\circ - 100^\circ \right) - \cos \left( 200^\circ + 140^\circ \right)\cos \left( 200^\circ - 140^\circ \right) \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos80^\circ + \cos240^\circ + \cos40^\circ - \cos340^\circ - \cos60^\circ \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos240^\circ - \cos60^\circ + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ \left( - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos\left( \frac{80^\circ + 40^\circ}{2} \right)\cos\left( \frac{80^\circ - 40^\circ}{2} \right) - \cos\left( 360^\circ - 20^\circ \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos60^\circ\cos20^\circ - \cos20^\circ \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \cos20^\circ - \cos20^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} \right]\]
\[ = - \frac{3}{4} = RHS\]
Hence, LHS = RHS

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 6.5 | Page 18

RELATED QUESTIONS

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


cos 40° + cos 80° + cos 160° + cos 240° =


sin 163° cos 347° + sin 73° sin 167° =


cos 35° + cos 85° + cos 155° =


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×