Advertisements
Advertisements
प्रश्न
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
उत्तर
Consider LHS:
\[ \cos 20^\circ \cos 100^\circ + \cos 100^\circ \cos 140^\circ - \cos 140^\circ \cos 200^\circ\]
\[ = \frac{1}{2}(2\cos 20^\circ \cos 100^\circ + 2\cos 100^\circ \cos 140^\circ - 2\cos 140^\circ \cos 200^\circ)\]
\[ = \frac{1}{2}\left[ \cos\left( 100^\circ + 20^\circ \right)\cos \left( 100^\circ - 20^\circ \right) + \cos \left( 140^\circ + 100^\circ \right)\cos \left( 140^\circ - 100^\circ \right) - \cos \left( 200^\circ + 140^\circ \right)\cos \left( 200^\circ - 140^\circ \right) \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos80^\circ + \cos240^\circ + \cos40^\circ - \cos340^\circ - \cos60^\circ \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos240^\circ - \cos60^\circ + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ \left( - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos\left( \frac{80^\circ + 40^\circ}{2} \right)\cos\left( \frac{80^\circ - 40^\circ}{2} \right) - \cos\left( 360^\circ - 20^\circ \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos60^\circ\cos20^\circ - \cos20^\circ \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \cos20^\circ - \cos20^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} \right]\]
\[ = - \frac{3}{4} = RHS\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: