मराठी

Prove That: Cos 20° Cos 100° + Cos 100° Cos 140° − 140° Cos 200° = − 3 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 

बेरीज

उत्तर

Consider LHS: 
\[ \cos 20^\circ \cos 100^\circ + \cos 100^\circ \cos 140^\circ - \cos 140^\circ \cos 200^\circ\]
\[ = \frac{1}{2}(2\cos 20^\circ \cos 100^\circ + 2\cos 100^\circ \cos 140^\circ - 2\cos 140^\circ \cos 200^\circ)\]
\[ = \frac{1}{2}\left[ \cos\left( 100^\circ + 20^\circ \right)\cos \left( 100^\circ - 20^\circ \right) + \cos \left( 140^\circ + 100^\circ \right)\cos \left( 140^\circ - 100^\circ \right) - \cos \left( 200^\circ + 140^\circ \right)\cos \left( 200^\circ - 140^\circ \right) \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos80^\circ + \cos240^\circ + \cos40^\circ - \cos340^\circ - \cos60^\circ \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos240^\circ - \cos60^\circ + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ \left( - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos\left( \frac{80^\circ + 40^\circ}{2} \right)\cos\left( \frac{80^\circ - 40^\circ}{2} \right) - \cos\left( 360^\circ - 20^\circ \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos60^\circ\cos20^\circ - \cos20^\circ \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \cos20^\circ - \cos20^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} \right]\]
\[ = - \frac{3}{4} = RHS\]
Hence, LHS = RHS

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 6.5 | पृष्ठ १८

संबंधित प्रश्‍न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


The value of sin 50° − sin 70° + sin 10° is equal to


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×