मराठी

If Sin X + Sin Y = \[\Sqrt{3}\] (Cos Y − Cos X), Then Sin 3x + Sin 3y = - Mathematics

Advertisements
Advertisements

प्रश्न

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 

पर्याय

  • 2 sin 3x

  • 0

  • 1

  • none of these

MCQ
बेरीज

उत्तर

We have,
sin x + sin y = \[\sqrt{3}\] (cos y − cos x)
\[\Rightarrow 2\sin\left( \frac{x + y}{2} \right) \cos\left( \frac{x - y}{2} \right) = 2\sqrt{3}\sin\left( \frac{x + y}{2} \right) \sin\left( \frac{x - y}{2} \right)\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right) - 2\sqrt{3}\sin\left( \frac{x + y}{2} \right)\sin\left( \frac{x - y}{2} \right) = 0\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\frac{x + y}{2} = 0 \text{ or }, \cos\left( \frac{x - y}{2} \right)-\sqrt{3}\sin\left( \frac{x - y}{2} \right)=0\]
\[\Rightarrow\frac{x + y}{2}=0\text{ or },\tan\left( \frac{x - y}{2} \right)=\frac{1}{\sqrt{3}}=\tan\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },\frac{x - y}{2}=\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },x-y=\frac{\pi}{3}\]

Case - I
Where x = -y

In this case,
sin3x + sin3y = sin(-3y) + sin3y = - sin3y + sin3y = 0
Case - II
Where x - y = `pi/3`
or, \[ 3x = \pi + 3y\]
\[\text{So,} \sin 3x + \sin 3y = \sin\left( \pi + 3y \right) + \sin 3y\]
\[ = - \sin 3y + \sin 3y\]
\[ = 0\]

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.4 | Q 13 | पृष्ठ २२

संबंधित प्रश्‍न

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

sin 80° − cos 70° = cos 50°

Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


The value of sin 50° − sin 70° + sin 10° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate:

sin 50° – sin 70° + sin 10°


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×