English

If Sin X + Sin Y = \[\Sqrt{3}\] (Cos Y − Cos X), Then Sin 3x + Sin 3y = - Mathematics

Advertisements
Advertisements

Question

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 

Options

  • 2 sin 3x

  • 0

  • 1

  • none of these

MCQ
Sum

Solution

We have,
sin x + sin y = \[\sqrt{3}\] (cos y − cos x)
\[\Rightarrow 2\sin\left( \frac{x + y}{2} \right) \cos\left( \frac{x - y}{2} \right) = 2\sqrt{3}\sin\left( \frac{x + y}{2} \right) \sin\left( \frac{x - y}{2} \right)\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right) - 2\sqrt{3}\sin\left( \frac{x + y}{2} \right)\sin\left( \frac{x - y}{2} \right) = 0\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\frac{x + y}{2} = 0 \text{ or }, \cos\left( \frac{x - y}{2} \right)-\sqrt{3}\sin\left( \frac{x - y}{2} \right)=0\]
\[\Rightarrow\frac{x + y}{2}=0\text{ or },\tan\left( \frac{x - y}{2} \right)=\frac{1}{\sqrt{3}}=\tan\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },\frac{x - y}{2}=\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },x-y=\frac{\pi}{3}\]

Case - I
Where x = -y

In this case,
sin3x + sin3y = sin(-3y) + sin3y = - sin3y + sin3y = 0
Case - II
Where x - y = `pi/3`
or, \[ 3x = \pi + 3y\]
\[\text{So,} \sin 3x + \sin 3y = \sin\left( \pi + 3y \right) + \sin 3y\]
\[ = - \sin 3y + \sin 3y\]
\[ = 0\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.4 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.4 | Q 13 | Page 22

RELATED QUESTIONS

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


cos 40° + cos 80° + cos 160° + cos 240° =


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

cos 2θ – cos θ


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×