Advertisements
Advertisements
Question
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Options
2 sin 3x
0
1
none of these
Solution
We have,
sin x + sin y = \[\sqrt{3}\] (cos y − cos x)
\[\Rightarrow 2\sin\left( \frac{x + y}{2} \right) \cos\left( \frac{x - y}{2} \right) = 2\sqrt{3}\sin\left( \frac{x + y}{2} \right) \sin\left( \frac{x - y}{2} \right)\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right) - 2\sqrt{3}\sin\left( \frac{x + y}{2} \right)\sin\left( \frac{x - y}{2} \right) = 0\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\frac{x + y}{2} = 0 \text{ or }, \cos\left( \frac{x - y}{2} \right)-\sqrt{3}\sin\left( \frac{x - y}{2} \right)=0\]
\[\Rightarrow\frac{x + y}{2}=0\text{ or },\tan\left( \frac{x - y}{2} \right)=\frac{1}{\sqrt{3}}=\tan\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },\frac{x - y}{2}=\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },x-y=\frac{\pi}{3}\]
Case - I
Where x = -y
In this case,
sin3x + sin3y = sin(-3y) + sin3y = - sin3y + sin3y = 0
Case - II
Where x - y = `pi/3`
or, \[ 3x = \pi + 3y\]
\[\text{So,} \sin 3x + \sin 3y = \sin\left( \pi + 3y \right) + \sin 3y\]
\[ = - \sin 3y + \sin 3y\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
cos 40° + cos 80° + cos 160° + cos 240° =
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2θ – cos θ
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.