Advertisements
Advertisements
Question
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Solution
`= 1/2 [2 cos (7"A")/3 sin (5"A")/3]` ...[Multiply and divide by 2]
`= 1/2 [sin ((7"A")/3 + (5"A")/3) - sin ((7"A")/3 - (5"A")/3)]`
`= 1/2 [sin (12"A")/3 - sin (7"A" - 5"A")/3]`
`= 1/2 [sin 4"A" - sin (2"A")/3]`
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`