Advertisements
Advertisements
Question
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Solution
cos 2A + cos 4A = 2 cos`(("2A + 4A")/2) cos (("2A - 4A")/2)` ...`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`
= 2 cos `((6"A")/2) cos ((6 - 2"A")/2)`
= 2 cos(3A) cos (-A) ...[∵ cos(-θ) = cos θ]
= 2 cos 3A cos A
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Prove that:
cos 20° cos 40° cos 80° = `1/8`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.