Advertisements
Advertisements
Question
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Solution
cos 20° cos 40° cos 80°
= `((2 sin 20^circ)/(2 sin 20^circ))` cos 20° cos 40° cos 80°
[multiply and divide by 2 sin 20°]
`= ((2 sin 20^circ cos 20^circ) cos 40^circ cos 80^circ)/(2 sin 20^circ)`
`= (sin (2 xx 20^circ) cos 40^circ cos 80^circ)/(2 sin 20^circ)`
= `(sin 40^circ cos 40^circ cos 80^circ)/(2 sin 20^circ)`
(Multiply and divide by 2)
`= 1/2 xx ((2 sin 40^circ cos 40^circ))/(2 sin 20^circ) cos 80^circ`
`= 1/2 xx ((sin 2 xx 40^circ)cos 80^circ)/(2 sin 20^circ)`
`= 1/2 xx (sin 80^circ cos 80^circ)/(2 sin 20^circ)`
`= 1/2 xx 1/2 ((2 sin 80^circ cos 80^circ))/(2 sin 20^circ)`
`= 1/8 xx (sin 160^circ)/(sin 20^circ)`
`= 1/8 xx sin (180^circ - 20^circ)/(sin 20^circ)`
`= 1/8 xx sin 20^circ/sin 20^circ` ...[∵ sin(180° – θ) = sin θ]
`= 1/8 xx 1 = 1/8`
APPEARS IN
RELATED QUESTIONS
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`