Advertisements
Advertisements
Question
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Solution
tan 20° tan 40° tan 80°
`= (sin 20^circ)/(cos 20^circ) xx (sin 40^circ)/(cos 40^circ) xx (sin 80^circ)/(cos 80^circ)`
`= (sin 20^circ xx sin 40^circ xx sin 80^circ)/(cos 20^circ cos 40^circ cos 80^circ)`
Consider sin 20° × sin 40° sin 80°
= sin 20° sin (60° – 20°) sin (60° + 20°)
= sin 20° [sin2 60° – sin2 20°]
`= sin 20^circ [3/4 - sin^2 20^circ]`
`= sin 20^circ [(3 - 4 sin^2 20^circ)/4]`
`= (3 sin 20^circ - 4 sin^3 20^circ)/4`
`= (sin 60^circ)/4`
`= (sqrt3/2)/4 = sqrt3/8`
cos 20° × cos 40° cos 80° = `1/8` ....[∵ from (i)] .... (2)
divide (1) by (2) we get, tan 20° tan 40° tan 80° = `(sqrt3/8)/(1/8) = sqrt3`
APPEARS IN
RELATED QUESTIONS
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
cos 35° + cos 85° + cos 155° =
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Evaluate-
cos 20° + cos 100° + cos 140°
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.