Advertisements
Advertisements
Question
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Solution
LHS = tan 20° tan 40° tan 60° tan 80°
\[= \tan 60^\circ \frac{\sin 20^\circ \sin 40^\circ \sin 80^\circ} {\cos 20^\circ \cos 40^\circ \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ }{\frac{1}{2}\left[ 2\cos 20^\circ \cos 40^\circ \right]\cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right] \sin 80^\circ}{\frac{1}{2}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos\left( 20^\circ - 40^\circ \right) \right] \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ \cos \left( - 20^\circ \right) - \cos 60^\circ \right] \sin 80^\circ}{\frac{1}{2}\left[ \cos 60^\circ + \cos\left( - 20^\circ \right) \right] \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]}{\frac{1}{2}\cos 80^\circ\left[ \frac{1}{2} + \cos 20^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin 80^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos20^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin \left( 90^\circ - 10^\circ \right) \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\cos 10^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ}\]
\[= \sqrt{3} \times \frac{\frac{1}{4}\left[ 2\cos 10^\circ \cos 20^\circ \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ 2\cos 80^\circ \cos 20^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 80^\circ + 20^\circ \right) + \cos \left( 80^\circ - 20^\circ \right) \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos 100^\circ + \cos 60^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 180^\circ - 80^\circ \right) + \frac{1}{2} \right]}\]
\[ = \sqrt{3} \times \frac{\frac{\sqrt{3}}{8} + \frac{1}{4}\sin 80^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ - \frac{1}{4}\cos 80^\circ + \frac{1}{8}}\left[ \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ, and \cos\left( 180^\circ - 80^\circ \right) = - \cos\left( 80^\circ \right) \right]\]
\[ = \sqrt{3} \times \frac{\frac{\sqrt{3}}{8}}{\frac{1}{8}}\]
\[ = 3 = RHS\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of cos 52° + cos 68° + cos 172° is
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`