English

Prove That:Tan 20° Tan 40° Tan 60° Tan 80° = 3 - Mathematics

Advertisements
Advertisements

Question

Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 

Sum

Solution

LHS = tan 20° tan 40° tan 60° tan 80°
\[= \tan 60^\circ \frac{\sin 20^\circ \sin 40^\circ \sin 80^\circ} {\cos 20^\circ \cos 40^\circ \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ }{\frac{1}{2}\left[ 2\cos 20^\circ \cos 40^\circ \right]\cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right] \sin 80^\circ}{\frac{1}{2}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos\left( 20^\circ - 40^\circ \right) \right] \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ \cos \left( - 20^\circ \right) - \cos 60^\circ \right] \sin 80^\circ}{\frac{1}{2}\left[ \cos 60^\circ + \cos\left( - 20^\circ \right) \right] \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]}{\frac{1}{2}\cos 80^\circ\left[ \frac{1}{2} + \cos 20^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin 80^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos20^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin \left( 90^\circ - 10^\circ \right) \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\cos 10^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ}\]
\[= \sqrt{3} \times \frac{\frac{1}{4}\left[ 2\cos 10^\circ \cos 20^\circ \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ 2\cos 80^\circ \cos 20^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 80^\circ + 20^\circ \right) + \cos \left( 80^\circ - 20^\circ \right) \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos 100^\circ + \cos 60^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 180^\circ - 80^\circ \right) + \frac{1}{2} \right]}\]
\[ = \sqrt{3} \times \frac{\frac{\sqrt{3}}{8} + \frac{1}{4}\sin 80^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ - \frac{1}{4}\cos 80^\circ + \frac{1}{8}}\left[ \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ, and \cos\left( 180^\circ - 80^\circ \right) = - \cos\left( 80^\circ \right) \right]\]
\[ = \sqrt{3} \times \frac{\frac{\sqrt{3}}{8}}{\frac{1}{8}}\]
\[ = 3 = RHS\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 5.5 | Page 7

RELATED QUESTIONS

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


The value of cos 52° + cos 68° + cos 172° is


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate:

sin 50° – sin 70° + sin 10°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×