Advertisements
Advertisements
Question
Evaluate:
sin 50° – sin 70° + sin 10°
Solution
LHS = (sin 50° – sin 70°) + sin 10°
= 2 cos `((50^circ + 70^circ)/2) sin ((50^circ - 70^circ)/2)` + sin 10°
`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) sin (("C - D")/2)]`
= 2 cos 60° sin(-10°) + sin 10°
`= 2 xx 1/2` (-sin 10°) + sin 10° ...[∵ sin(-θ) = -sin θ]
= -sin 10° + sin 10°
= 0
= RHS
APPEARS IN
RELATED QUESTIONS
Show that :
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`