English

Show that : Sin 50 ∘ Cos 85 ∘ = 1 − √ 2 Sin 35 ∘ 2 √ 2 - Mathematics

Advertisements
Advertisements

Question

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]
Sum

Solution

\[\text{ LHS }= 2 \sin50^\circ \cos 85^\circ\]
\[ = \frac{\sin \left( 50^\circ + 85^\circ \right) + \sin \left( 50^\circ - 85^\circ \right)}{2} \left[ \because \sin A \cos B = \frac{1}{2}\left\{ \sin (A + B) + \sin (A - B) \right\} \right]\]
\[ = \frac{\sin 135^\circ + \sin \left( - 35^\circ \right)}{2}\]
\[ = \frac{\sin 135^\circ - \sin 35^\circ}{2}\]
\[ = \frac{\cos 45^\circ - \sin 35^\circ}{2} \left[ \because \sin \left( 90^\circ + 45^\circ \right) = \cos 45^\circ \right]\]
\[ = \frac{1}{2}\left( \frac{1}{\sqrt{2}} - \sin 35^\circ \right)\]
\[ = \frac{1}{2}\left[ \frac{1 - \sqrt{2}\sin 35^\circ}{\sqrt{2}} \right]\]
\[ = \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}\]
\[\text{ RHS }= \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}\]
Hence, LHS = RHS

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 3.1 | Page 6

RELATED QUESTIONS

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


cos 40° + cos 80° + cos 160° + cos 240° =


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


cos 35° + cos 85° + cos 155° =


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×