English

Prove That: Sin α + Sin β + Sin γ − Sin ( α + β + γ ) = 4 Sin ( α + β 2 ) Sin ( β + γ 2 ) Sin ( γ + α 2 ) - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 

Sum

Solution

Consider LHS: 

\[ \sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma)\]

\[ = 2sin\left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) + 2\cos \left( \frac{\gamma + \alpha + \beta + \gamma}{2} \right) \sin \left( \frac{\gamma - \alpha - \beta - \gamma}{2} \right)\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left( \frac{- \alpha - \beta}{2} \right)\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left[ - \left( \frac{\alpha + \beta}{2} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ \cos\left( \frac{\alpha - \beta}{2} \right) - \cos\left( \frac{2\gamma + \alpha + \beta}{2} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha - \beta + 2\gamma + \alpha + \beta}{4} \right) \sin\left( \frac{\alpha - \beta - 2\gamma - \alpha - \beta}{4} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{- \beta - \gamma}{2} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ 2\sin\left( \frac{\alpha + \gamma}{2} \right) sin\left( \frac{\beta + \gamma}{2} \right) \right]\]

\[\]

\[ = 4\sin\left( \frac{\alpha + \beta}{2} \right) \sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{\beta + \gamma}{2} \right)\]

\[\]

 = RHS

Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 9.1 | Page 19

RELATED QUESTIONS

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

sin 51° + cos 81° = cos 21°

Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×