Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma)\]
\[ = 2sin\left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) + 2\cos \left( \frac{\gamma + \alpha + \beta + \gamma}{2} \right) \sin \left( \frac{\gamma - \alpha - \beta - \gamma}{2} \right)\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left( \frac{- \alpha - \beta}{2} \right)\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left[ - \left( \frac{\alpha + \beta}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ \cos\left( \frac{\alpha - \beta}{2} \right) - \cos\left( \frac{2\gamma + \alpha + \beta}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha - \beta + 2\gamma + \alpha + \beta}{4} \right) \sin\left( \frac{\alpha - \beta - 2\gamma - \alpha - \beta}{4} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{- \beta - \gamma}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ 2\sin\left( \frac{\alpha + \gamma}{2} \right) sin\left( \frac{\beta + \gamma}{2} \right) \right]\]
\[\]
\[ = 4\sin\left( \frac{\alpha + \beta}{2} \right) \sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{\beta + \gamma}{2} \right)\]
\[\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`