Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma)\]
\[ = 2sin\left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) + 2\cos \left( \frac{\gamma + \alpha + \beta + \gamma}{2} \right) \sin \left( \frac{\gamma - \alpha - \beta - \gamma}{2} \right)\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left( \frac{- \alpha - \beta}{2} \right)\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left[ - \left( \frac{\alpha + \beta}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ \cos\left( \frac{\alpha - \beta}{2} \right) - \cos\left( \frac{2\gamma + \alpha + \beta}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha - \beta + 2\gamma + \alpha + \beta}{4} \right) \sin\left( \frac{\alpha - \beta - 2\gamma - \alpha - \beta}{4} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{- \beta - \gamma}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ 2\sin\left( \frac{\alpha + \gamma}{2} \right) sin\left( \frac{\beta + \gamma}{2} \right) \right]\]
\[\]
\[ = 4\sin\left( \frac{\alpha + \beta}{2} \right) \sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{\beta + \gamma}{2} \right)\]
\[\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
cos 35° + cos 85° + cos 155° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.