मराठी

Prove That: Sin α + Sin β + Sin γ − Sin ( α + β + γ ) = 4 Sin ( α + β 2 ) Sin ( β + γ 2 ) Sin ( γ + α 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 

बेरीज

उत्तर

Consider LHS: 

\[ \sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma)\]

\[ = 2sin\left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) + 2\cos \left( \frac{\gamma + \alpha + \beta + \gamma}{2} \right) \sin \left( \frac{\gamma - \alpha - \beta - \gamma}{2} \right)\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left( \frac{- \alpha - \beta}{2} \right)\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left[ - \left( \frac{\alpha + \beta}{2} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ \cos\left( \frac{\alpha - \beta}{2} \right) - \cos\left( \frac{2\gamma + \alpha + \beta}{2} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha - \beta + 2\gamma + \alpha + \beta}{4} \right) \sin\left( \frac{\alpha - \beta - 2\gamma - \alpha - \beta}{4} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{- \beta - \gamma}{2} \right) \right]\]

\[\]

\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ 2\sin\left( \frac{\alpha + \gamma}{2} \right) sin\left( \frac{\beta + \gamma}{2} \right) \right]\]

\[\]

\[ = 4\sin\left( \frac{\alpha + \beta}{2} \right) \sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{\beta + \gamma}{2} \right)\]

\[\]

 = RHS

Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 9.1 | पृष्ठ १९

संबंधित प्रश्‍न

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


cos 40° + cos 80° + cos 160° + cos 240° =


cos 35° + cos 85° + cos 155° =


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×