मराठी

Cos 35° + Cos 85° + Cos 155° = - Mathematics

Advertisements
Advertisements

प्रश्न

cos 35° + cos 85° + cos 155° =

पर्याय

  • 0

  • \[\frac{1}{\sqrt{3}}\]

     

  • \[\frac{1}{\sqrt{2}}\]

     

  •  cos 275°

MCQ
बेरीज

उत्तर

0

\[\cos35^\circ + \cos85^\circ + \cos155^\circ\]
\[ = 2\cos\left( \frac{35^\circ + 85^\circ}{2} \right) \cos\left( \frac{35^\circ - 85^\circ}{2} \right) + \cos155^\circ \left[ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ = 2\cos60^\circ \cos\left( - 25^\circ \right) + \cos155^\circ\]
\[ = 2 \times \frac{1}{2}\cos25^\circ + \cos155^\circ\]
\[ = \cos25^\circ + \cos155^\circ\]
\[ = 2\cos\left( \frac{25^\circ + 155^\circ}{2} \right) \cos\left( \frac{25^\circ - 155^\circ}{2} \right)\]
\[ = 2\cos90^\circ \cos65^\circ\]
\[ = 0\]
shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.4 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.4 | Q 7 | पृष्ठ २१

संबंधित प्रश्‍न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


The value of cos 52° + cos 68° + cos 172° is


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Evaluate-

cos 20° + cos 100° + cos 140°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×