मराठी

The Value of Cos 52° + Cos 68° + Cos 172° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cos 52° + cos 68° + cos 172° is

पर्याय

  • 0

  • 1

  • 2

  • `3/2`

MCQ

उत्तर

0
\[\cos52^\circ + \cos68^\circ + \cos172^\circ\]
\[ = 2\cos\left( \frac{52^\circ + 68^\circ}{2} \right)\cos\left( \frac{52^\circ - 68^\circ}{2} \right) + \cos172^\circ \left[ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ = 2\cos60^\circ\cos\left( - 8^\circ \right) + \cos172^\circ\]
\[ = 2 \times \frac{1}{2}\cos8^\circ + \cos172^\circ\]
\[ = \cos8^\circ + \cos172^\circ\]
\[ = 2\cos\left( \frac{8^\circ + 172^\circ}{2} \right)\cos\left( \frac{8^\circ - 172^\circ}{2} \right)\]
\[ = 2\cos90^\circ\cos82^\circ\]
\[ = 0\]

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.4 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.4 | Q 4 | पृष्ठ २१

संबंधित प्रश्‍न

Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


sin 163° cos 347° + sin 73° sin 167° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate:

sin 50° – sin 70° + sin 10°


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×