Advertisements
Advertisements
प्रश्न
The value of cos 52° + cos 68° + cos 172° is
पर्याय
0
1
2
`3/2`
उत्तर
0
\[\cos52^\circ + \cos68^\circ + \cos172^\circ\]
\[ = 2\cos\left( \frac{52^\circ + 68^\circ}{2} \right)\cos\left( \frac{52^\circ - 68^\circ}{2} \right) + \cos172^\circ \left[ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ = 2\cos60^\circ\cos\left( - 8^\circ \right) + \cos172^\circ\]
\[ = 2 \times \frac{1}{2}\cos8^\circ + \cos172^\circ\]
\[ = \cos8^\circ + \cos172^\circ\]
\[ = 2\cos\left( \frac{8^\circ + 172^\circ}{2} \right)\cos\left( \frac{8^\circ - 172^\circ}{2} \right)\]
\[ = 2\cos90^\circ\cos82^\circ\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate:
sin 50° – sin 70° + sin 10°
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.