Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ LHS }= \sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2}\]
\[ = \frac{1}{2}\left[ 2\sin\frac{x}{2}\sin\frac{7x}{2} + 2\sin\frac{3x}{2}\sin\frac{11x}{2} \right]\]
\[ = \frac{1}{2}\left[ \cos\left( \frac{7x}{2} - \frac{x}{2} \right) - \cos\left( \frac{7x}{2} + \frac{x}{2} \right) + \cos\left( \frac{11x}{2} - \frac{3x}{2} \right) - \cos\left( \frac{11x}{2} + \frac{3x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ \cos3x - \cos4x + \cos4x - \cos7x \right]\]
\[ = \frac{1}{2}\left[ \cos3x - \cos7x \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( \frac{3x + 7x}{2} \right)\sin\left( \frac{3x - 7x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( 5x \right)\sin\left( - 2x \right) \right]\]
\[ = \sin\left( 5x \right)\sin\left( 2x \right) =\text{ RHS }\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Show that :
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.