Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ LHS }= \cos x \cos\frac{x}{2} - \cos 3x \cos\frac{9x}{2}\]
\[ = \frac{1}{2}\left[ 2\cos x \cos\frac{x}{2} - 2\cos 3x \cos\frac{9x}{2} \right]\]
\[ = \frac{1}{2}\left[ \cos\left( x + \frac{x}{2} \right) + \cos\left( x - \frac{x}{2} \right) - \cos\left( 3x + \frac{9x}{2} \right) - \cos\left( 3x - \frac{9x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ \cos\frac{3x}{2} + \cos\frac{x}{2} - \cos\frac{15x}{2} - \cos\frac{3x}{2} \right]\]
\[ = \frac{1}{2}\left[ \cos\frac{x}{2} - \cos\frac{15x}{2} \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( \frac{x + 15x}{4} \right)\sin\left( \frac{x - 15x}{4} \right) \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( 4x \right)\sin\left( - \frac{7x}{2} \right) \right]\]
\[ = \sin\left( 4x \right)\sin\left( \frac{7x}{2} \right) = \text{ RHS }\]
Hence, LHS = RHS
Notes
Disclaimer: The given question is incorrect. The correct question should be
APPEARS IN
संबंधित प्रश्न
Show that :
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 163° cos 347° + sin 73° sin 167° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`