मराठी

Prove that cos⁡xcos⁡x2−cos⁡3xcos⁡9x2=sin⁡7xsin⁡8x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]
बेरीज

उत्तर

\[\text{ LHS }= \cos x \cos\frac{x}{2} - \cos 3x \cos\frac{9x}{2}\]

\[ = \frac{1}{2}\left[ 2\cos x \cos\frac{x}{2} - 2\cos 3x \cos\frac{9x}{2} \right]\]

\[ = \frac{1}{2}\left[ \cos\left( x + \frac{x}{2} \right) + \cos\left( x - \frac{x}{2} \right) - \cos\left( 3x + \frac{9x}{2} \right) - \cos\left( 3x - \frac{9x}{2} \right) \right]\]

\[ = \frac{1}{2}\left[ \cos\frac{3x}{2} + \cos\frac{x}{2} - \cos\frac{15x}{2} - \cos\frac{3x}{2} \right]\]

\[ = \frac{1}{2}\left[ \cos\frac{x}{2} - \cos\frac{15x}{2} \right]\]

\[ = \frac{1}{2}\left[ - 2\sin\left( \frac{x + 15x}{4} \right)\sin\left( \frac{x - 15x}{4} \right) \right]\]

\[ = \frac{1}{2}\left[ - 2\sin\left( 4x \right)\sin\left( - \frac{7x}{2} \right) \right]\]

\[ = \sin\left( 4x \right)\sin\left( \frac{7x}{2} \right) = \text{ RHS }\]

Hence, LHS = RHS

shaalaa.com

Notes

Disclaimer: The given question is incorrect. The correct question should be

\[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 4x \sin \frac{7x}{2}\]
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 6.7 | पृष्ठ १८

संबंधित प्रश्‍न

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


sin 163° cos 347° + sin 73° sin 167° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×