Advertisements
Advertisements
प्रश्न
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
उत्तर
\[LHS = \sin 20^\circ \sin 40^\circ\sin 60^\circ \sin 80^\circ\sin 60^\circ \left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos 20^\circ - \frac{1}{2} \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 10^\circ \right)\cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 10^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin\left( 80^\circ \right)\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 10^\circ \cos 20^\circ \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{3}{16} + \frac{\sqrt{3}}{8}\sin 80^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ \left[ \because \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ \right]\]
\[ = \frac{3}{16} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
The value of sin 50° − sin 70° + sin 10° is equal to
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`